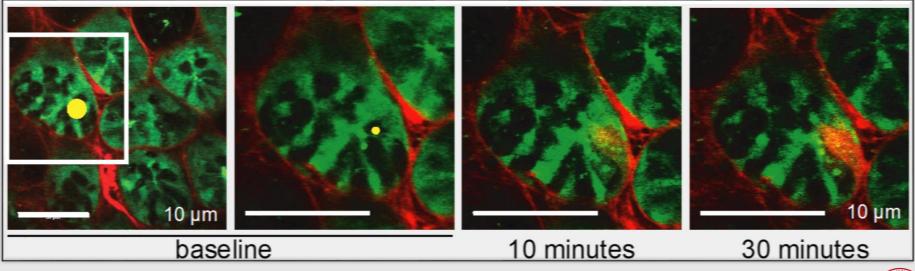

CornellEngineering

Nancy E. and Peter C. Meinig School of Biomedical Engineering

BIOMEDICAL ENGINEERING CORNELL UNIVERSITY


What Makes BME Different...

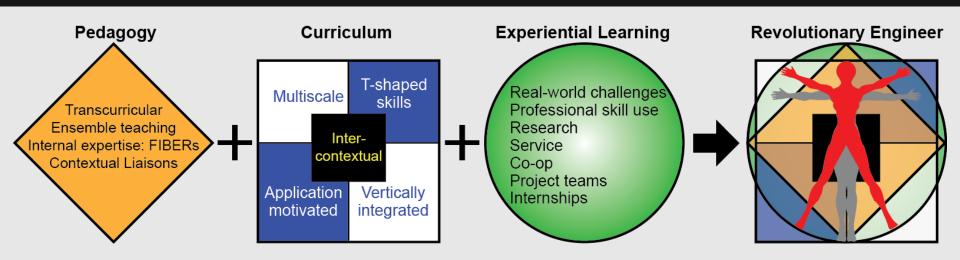
... from the life sciences?

- Quantitative/Analytical
- Controlling processes
- Driving change
- Restoring/Improving function

... from other engineering disciplines?

- Engineering for human health applications
- Variability/Uncertainty
- Rapid innovation cycle
- Moving targets (dynamic/organic processes)

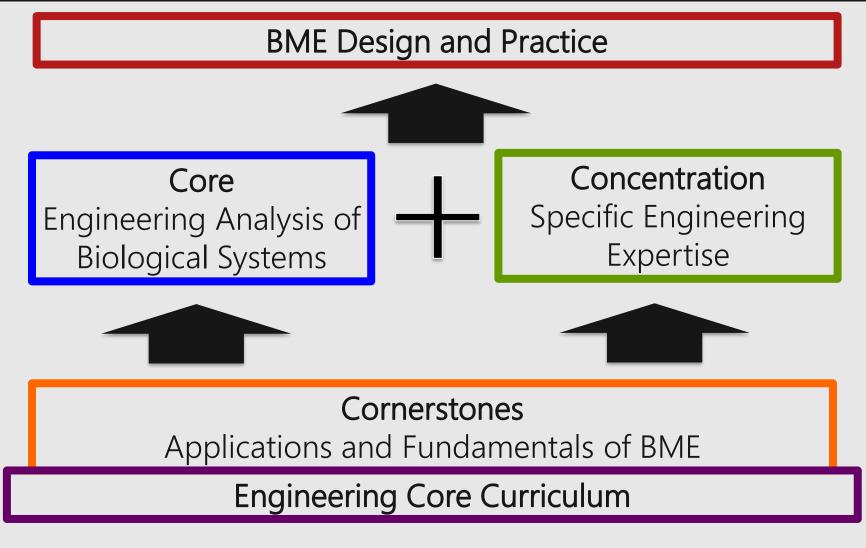
CornellEngineering


BME as Architects and Engineers

- Able to represent and analyze complex engineering systems
 - From Block diagrams to control feedback networks
 - From Mathematical modeling to computational simulation
 - CAD, Manufacturing design, device integration, validation
- Articulate natural design principles that meet function
 - Multi-scale (cells to organ system)
 - Dynamic, sloppy
 - Soft, hard, circuitry
- Incorporate Experimental Design for knowledge creation
 - Hypothesis generation and experimental methodology
 - Statistical testing and interpretation
- Human health constraints for engineering solutions
 - Breaking the rules
- Practice creativity in solving problems

CornellEngineering

Integrated BME Major Vision



- Trans-curricular Pedagogy and Course Development
- Innovation in education and assessment
- Vertically integrated "flipped" curriculum: Applications first
- Intercontextual, strategic synergy of repetition
- Capture experiential learning
- Community engagement
- Professional skills mastery (know how to add value)

CornellEngineering

Curriculum at a Glance

CornellEngineering

Core BME Sequence Strategy

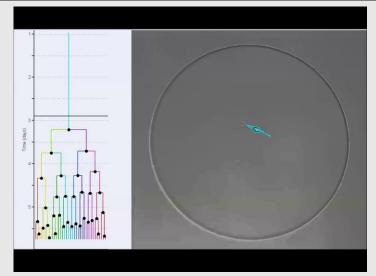
- Multi-scale engineering understanding of the human system
 - Molecular to organ system scales
 - Feedback networks and variability/uncertainty
- Develop Engineering Skills for open problems
 - Needs based modeling and simulation
 - Robust engineering system design
 - Practice in creativity and range
- Deep Understanding of Human Health Factors that Impact Engineering Solutions
 - Immune response
 - Coagulation
 - Bacterial/viral infection
 - Wound healing
 - Regeneration

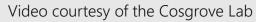
CornellEngineering

BME Concentrations

Molecular/Cellular /Systems Engineering

Biomedical Imaging & Instrumentation Biomaterials & Drug Delivery


Biomechanics & Mechanobiology


CornellEngineering Nancy E. and Peter C. Meinig School of Biomedical Engineering

<u>Molecular/Cellular/Systems Engineering</u>

- Data science/ simulation to understand how molecular and cellular coordination control tissue homeostasis and pathogenesis
- Engineering novel molecules to track and alter cell behaviors
- Creation of new culture models/systems to study diseases
- Precision medicine



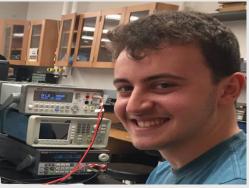
Kelly W. (BS '18) CBPartners, Analyst


CornellEngineering

<u>Biomaterials & Drug Delivery (BMDD)</u>

- Understanding how engineered materials interact with host biology
- Engineering/modifyin g new materials to control host responses – wound healing, immunity, biomechanics
- Engineering new delivery mechanisms within biomaterials for efficient drug release

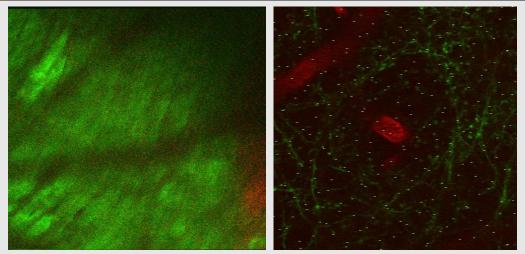
CornellEngineering


Nancy E. and Peter C. Meinig School of Biomedical Engineering

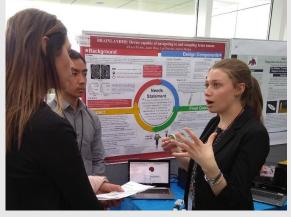
Video courtesy of the Butcher Lab

Shweta M. (BS '19) Merck, Associate Scientist

Alexander S. (BS '19) Vanderbilt University, *PhD Candidate*



Biomedical Imaging & Instrumentation (BMII)

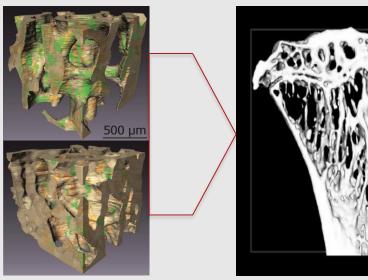

- Design and implement novel instrumentation for quantitative visualization of physiology/biology
- Direct manipulation of biological processes in vivo.
- Construction of algorithms to identify emergent features and predict clinical performance

CornellEngineering

Nancy E. and Peter C. Meinig School of Biomedical Engineering

Videos courtesy of the Schaffer-Nishimura Lab.

Allison B. (BS '18, MEng '19) Stryker, *Regulatory Affairs* Specialist



Jordan H. (BS '18) Harvard-MIT HST Program PhD Candidate

Biomechanics and Mechanobiology (BMMB)

- Perform microstructural based analyses of tissue mechanical properties
- Design and implement novel mechanical testing and mechanical stimulation devices
- Understand and control cellular responses to mechanical forces

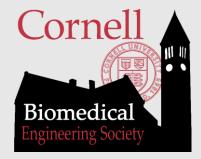
Images courtesy of the Hernandez and van der Meulen Labs.

Shannon H. (BS '18) Harris Orthopaedic Laboratory at Mass General Hospital, *Research Technician*

Haley A. (BS '19) Toyota Crashworthiness Engineer

CornellEngineering

Experiential Learning


- Research/Teaching Assistants
- BMES Student Society
- Educational Outreach Activities
 - K-12 Education
 - Science Center
 - Engaged Cornell
- Project Teams
 - igem
 - Engineering World Health
 - BME DEBUT
 - CU Biomedical Devices

CornellEngineering

Ideate – Design – Build – Test

CornellEngineering Nancy E. and Peter C. Meinig School of Biomedical Engineering

BME Design/Fabrication Strategy

- Training in biomedical instrumentation and data analysis
- Practical Apprenticeship experience specific to each concentration
- Two Semester Design sequence building technology for real biomedical problems
- Problems posed by industry, hospitals
 - Teams based on real complementary expertise
 - Authentic design, fabrication, and test facilities

BME Design Showcase

BME Paths

- Pre-Health Careers (Med, Vet, etc.)
- Study Abroad
- Co-Op or Internship
- Honors Thesis
- 4.5 Year BS/MEng
- Minors (CS, MAE, Genetics, etc.)
- BS/MEng/MBA

CornellEngineering Nancy E. and Peter C. Meinig School of Biomedical Engineering

Questions?

